
MOVE

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

Operand1 C S A N A N P I F B D T L C G O yes no

Operand2 S A M A N P I F B D T L C G O yes yes

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand1 C S A A N* B yes no

Operand2 S A A B yes no

Operand3 C S N P I yes no

Operand4 C S N P I yes no

Operand5 C S N P I yes no

Operand6 C S N P I yes no

* see text.

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand1 G yes no

Operand2 G yes no

1Copyright Software AG 2003

MOVEMOVE

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand1 C S A A B yes no

Operand2 S A A N P I F B D T L yes yes

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand1 C S A N A N P I F B D T L yes no

Operand2 S A A B yes yes

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand1 C S A N A N P I F B D T L yes no

Operand2 S A A yes yes

Related Statement: COMPUTE

Function
The MOVE statement is used to move the value of an operand to one or more operands (field or array).

If operand2 is a DYNAMIC variable, its length may be modified by the MOVE operation. The current length of a
DYNAMIC variable can be ascertained by using the system variable *LENGTH. For general information on the
DYNAMIC variable, see the section Large and Dynamic Variables/Fields.

If operand2 is of format C, operand1 may also be specified as (parameter). Valid parameters are:

Copyright Software AG 20032

MOVEFunction

Parameters that can be specified with the MOVE statementSpecification
S = at statement level
E = at element level

AD Attribute Definition SE

CD Color Definition S

For more information on data transfer compatibility and the rules for data transfer, see the section Data Transfer.

ROUNDED
This option causes operand2 to be rounded.

ROUNDED is ignored if operand2 is not numeric.

If operand2 is of format N or P and operand2 is specified more than once, ROUNDED is ignored for target operands
with seven positions after the decimal point.

parameter
As parameter, you can specify the option "PM=I" or the session parameter DF:

PM=I
In order to support languages whose writing direction is from right to left, you can specify "PM=I" so as to transfer
the value of operand1 in inverse (right-to-left) direction to operand2.

For example, as a result of the following statements, the content of #B would be "ZYX":

 MOVE ’XYZ’ TO #A
 MOVE #A (PM=I) TO #B

PM=I can only be specified if operand2 has alphanumeric format.

Any trailing blanks in operand1 will be removed, then the value is reversed and moved to operand2. If operand1 is
not of alphanumeric format, the value will be converted to alphanumeric format before it is reversed.

See also the use of PM=I in conjunction with MOVE LEFT/RIGHT JUSTIFIED.

DF
If operand1 is a date variable and operand2 is an alphanumeric field, you can specify the session parameter DF as
parameter for this date variable. The session parameter DF is described in the Natural Parameter Reference
documentation.

SUBSTRING
Without the SUBSTRING option, the whole content of a field is moved. The SUBSTRING option allows you to
move only a certain part of an alphanumeric or a binary field. After the field name (operand1) in the SUBSTRING
clause you specify first the starting position (operand3) and then the length (operand4) of the field portion to be
moved.

3Copyright Software AG 2003

ROUNDEDMOVE

For example, to move the 5th to 12th position inclusive of the value in a field #A into a field #B, you would specify:

 MOVE SUBSTRING(#A,5,8) TO #B

If operand1 is a DYNAMIC variable, the specified field portion to be moved must be within its current length;
otherwise, a runtime error will occur.

Also, you can move a value of an alphanumeric, binary or numeric field into a certain part of the target field. After
the field name (operand2) in the SUBSTRING clause you specify first the starting position (operand5) and then the
length (operand6) of the field portion into which the value is to be moved.

For example, to move the value of a field #A into the 3rd to 6th position inclusive of a field #B, you would specify:

 MOVE #A TO SUBSTRING(#B,3,4)

If operand2 is a DYNAMIC variable, the specified starting position (operand5) must not be greater than the
variable’s current length plus 1; a greater starting position will lead to a runtime error, because it would cause an
undefined gap within the content of operand2.

If you omit operand3/5, the starting position is assumed to be "1". If you omit operand4/6, the length is assumed to
be from the starting position to the end of the field.

If operand2 is a DYNAMIC variable and the specified starting position (operand5) is the variable’s current length
plus 1, which means that the MOVE operation is used to increase the length of the variable, operand6 must be
specified in order to determine the new length of the variable.

Note:
MOVE with the SUBSTRING option is a byte-by-byte move (that is, the rules described under Rules for Arithmetic
Assignment in the Natural Statements documentation do not apply).

MOVE BY NAME
This option is used to move individual fields contained in a data structure to another data structure, independent of
their position in the structure. A field is moved only if its name appears in both structures (this includes REDEFINEd
fields as well as fields resulting from a redefinition). The individual fields may be of any format. The operands can
also be views.

Note:
The sequence of the individual moves is determined by the sequence of the fields in operand1.

MOVE BY NAME with Arrays

If the data structures contain arrays, these will internally be assigned the index "(*)" when moved; this may lead to
an error if the arrays do not comply with the rules for assignment operations with arrays (see the section Processing
of Arrays in the Natural Statements documentation).

Copyright Software AG 20034

MOVEMOVE BY NAME

Example 1 of MOVE BY NAME with Arrays:

 DEFINE DATA LOCAL
 1 #GROUP1
 2 #FIELD (A10/1:10)
 1 #GROUP2
 2 #FIELD (A10/1:10)
 END-DEFINE
 ...
 MOVE BY NAME #GROUP1 TO #GROUP2
 ...

In this, example, the MOVE statement would internally be resolved as:

 MOVE #GROUP1.#FIELD (*) TO #GROUP2.#FIELD (*)

If part of an indexed group is moved to another part of the same group, this may lead to unexpected results as shown
in the example below.

Example 2 of MOVE BY NAME with Arrays:

 DEFINE DATA LOCAL
 1 #GROUP1 (1:5)
 2 #FIELDA (N1) INIT <1,2,3,4,5>
 2 REDEFINE #FIELDA
 3 #FIELDB (N1)
 END-DEFINE
 ...
 MOVE BY NAME #GROUP1 (2:4) TO #GROUP1 (1:3)
 ...

In this, example, the MOVE statement would internally be resolved as:

 MOVE #FIELDA (2:4) TO #FIELDA (1:3)
 MOVE #FIELDB (2:4) TO #FIELDB (1:3)

First, the contents of the occurrences 2 to 4 of #FIELDA are moved to the occurrences 1 to 3 of #FIELDA; that is,
the occurrences receive the following values:

Occurrence: 1. 2. 3. 4. 5.

Value before: 1 2 3 4 5

Value after: 2 3 4 4 5

Then the contents of the occurrences 2 to 4 of #FIELDB are moved to the occurrences 1 to 3 of #FIELDB; that is,
the occurrences receive the following values:

Occurrence: 1. 2. 3. 4. 5.

Value before: 2 3 4 4 5

Value after: 3 4 4 4 5

5Copyright Software AG 2003

MOVE BY NAME with ArraysMOVE

MOVE BY POSITION
This option allows you to move the contents of fields in a group to another group, regardless of the field names. The
values are moved field by field from one group to the other in the order in which the fields are defined (this does not
include fields resulting from a redefinition). The individual fields may be of any format. The number of fields in
each group must be the same; also, the level structure and array dimensions of the fields must match. Format
conversion is done according to the rules for arithmetic assignment described in the Natural Statements
documentation. The operands can also be views.

Example of MOVE BY POSITION:

 DEFINE DATA LOCAL
 1 #GROUP1
 2 #FIELD1A (N5)
 2 #FIELD1B (A3/1:3)
 2 REDEFINE #FIELD1B
 3 #FIELD1BR (A9)
 1 #GROUP2
 2 #FIELD2A (N5)
 2 #FIELD2B (A3/1:3)
 2 REDEFINE #FIELD2B
 3 #FIELD2BR (A9)
 END-DEFINE
 ...
 MOVE BY POSITION #GROUP1 TO #GROUP2
 ...

In this example, the content of #FIELD1A is moved to #FIELD2A, and the content of #FIELD1B to #FIELD2B; the
fields #FIELD1BR and #FIELD2BR are not affected.

MOVE EDITED
An edit mask may be specified with operand1 or operand2.

If an edit mask is specified for operand2, the value of operand1 will be placed into operand2 using this edit mask.

If an edit mask is specified for operand1, the edit mask will be applied to operand1 and the result will be moved to
operand2. The length of the operand1 value after the edit mask has been applied to it must not exceed the length of
operand2.

For details on edit masks, see the session parameter EM in the Natural Parameter Reference documentation.

MOVE LEFT/RIGHT JUSTIFIED
This option is used to cause the values to be moved to be left- or right-justified in operand2.

With MOVE LEFT JUSTIFIED, any leading blanks in operand1 are removed (on mainframes, blanks and binary
zeros are removed) before the value is placed left-justified into operand2. The remainder of operand2 will then be
filled with blanks. If the value is longer than operand2, the value will be truncated on the right-hand side.

With MOVE RIGHT JUSTIFIED, any trailing blanks in operand1 are truncated (on mainframes, blanks and binary
zeros are removed) before the value is placed right-justified into operand2. The remainder of operand2 will then be
filled with blanks. If the value is longer than operand2, the value will be truncated on the left-hand side.

Copyright Software AG 20036

MOVEMOVE BY POSITION

MOVE LEFT/RIGHT JUSTIFIED cannot be used if operand2 is a DYNAMIC variable.

MOVE LEFT/RIGHT JUSTIFIED with PM=I

When you use MOVE LEFT/RIGHT JUSTIFIED in conjunction with PM=I, the move is performed in the following
steps:

1. If operand1 is not of alphanumeric format, the value is converted to alphanumeric format.
2. Any trailing blanks in operand1 are removed (on mainframes, blanks and binary zeros are removed).
3. In the case of LEFT JUSTIFIED, any leading blanks in operand1 are also removed (on mainframes, blanks and

binary zeros are removed).
4. The value is reversed, and then moved to operand2.
5. If applicable, the remainder of operand2 is filled with blanks, or the value is truncated (see above).

Other Considerations
If a database field is used as the result field, the MOVE operation results in an update only to the internal value of the
field as used within the program. The value of the field in the database remains unchanged.

A Natural system function may be used only if the MOVE statement is specified in conjunction with an AT BREAK,
AT END OF DATA or AT END OF PAGE statement.

See also the section Rules for Arithmetic Assignment in the Natural Statements documentation.

Note:
If operand1 is a time variable (format T), only the time component of the variable content is transferred, but not the
date component (except with MOVE EDITED).

7Copyright Software AG 2003

Other ConsiderationsMOVE

Example 1

 /* EXAMPLE ’MOVEX1’: MOVE
 /***
 DEFINE DATA LOCAL
 1 #A (N3)
 1 #B (A5)
 1 #C (A2)
 1 #D (A7)
 1 #E (N1.0)
 1 #F (A5)
 1 #G (N3.2)
 1 #H (A6)
 END-DEFINE
 /**
 MOVE 5 TO #A
 WRITE NOTITLE ’MOVE 5 TO #A’ 30X ’=’ #A
 /**
 MOVE ’ABCDE’ TO #B #C #D
 WRITE ’MOVE ABCDE TO #B #C #D’ 20X ’=’ #B ’=’ #C ’=’ #D
 /**
 MOVE -1 TO #E
 WRITE ’MOVE -1 TO #E’ 28X ’=’ #E
 /**
 MOVE ROUNDED 1.995 TO #E
 WRITE ’MOVE ROUNDED 1.995 TO #E’ 18X ’=’ #E
 /**
 MOVE RIGHT JUSTIFIED ’ABC’ TO #F
 WRITE ’MOVE RIGHT JUSTIFIED ’’ABC’’ TO #F’ 10X ’=’ #F
 /**
 MOVE EDITED ’003.45’ TO #G (EM=999.99)
 WRITE ’MOVE EDITED ’’003.45’’ TO #G (EM=999.99)’ 4X ’=’ #G
 /**
 MOVE EDITED 123.45 (EM=999.99) TO #H
 WRITE ’MOVE EDITED 123.45 (EM=999.99) TO #H’ 6X ’=’ #H
 /**
 END

 MOVE 5 TO #A #A: 5
 MOVE ABCDE TO #B #C #D #B: ABCDE #C: AB #D: ABCDE
 MOVE -1 TO #E #E: -1
 MOVE ROUNDED 1.995 TO #E #E: 2
 MOVE RIGHT JUSTIFIED ’ABC’ TO #F #F: ABC
 MOVE EDITED ’003.45’ TO #G (EM=999.99) #G: 3.45
 MOVE EDITED 123.45 (EM=999.99) TO #H #H: 123.45

Copyright Software AG 20038

MOVEExample 1

Example 2

 /* EXAMPLE ’MOVEX2’: MOVE BY NAME
 /**
 DEFINE DATA LOCAL
 1 #SBLOCK
 2 #FIELDA (A10) INIT <’AAAAAAAAAA’>
 2 #FIELDB (A10) INIT <’BBBBBBBBBB’>
 2 #FIELDC (A10) INIT <’CCCCCCCCCC’>
 2 #FIELDD (A10) INIT <’DDDDDDDDDD’>
 1 #TBLOCK
 2 #FIELD1 (A15) INIT <’ ’>
 2 #FIELDA (A10) INIT <’ ’>
 2 #FIELD2 (A10) INIT <’ ’>
 2 #FIELDB (A10) INIT <’ ’>
 2 #FIELD3 (A20) INIT <’ ’>
 2 #FIELDC (A10) INIT <’ ’>
 END-DEFINE
 /**
 MOVE BY NAME #SBLOCK TO #TBLOCK
 /**
 WRITE NOTITLE ’CONTENTS OF #TBLOCK AFTER MOVE BY NAME:’
 // ’=’ #TBLOCK.#FIELD1
 / ’=’ #TBLOCK.#FIELDA
 / ’=’ #TBLOCK.#FIELD2
 / ’=’ #TBLOCK.#FIELDB
 / ’=’ #TBLOCK.#FIELD3
 / ’=’ #TBLOCK.#FIELDC
 /**
 END

CONTENTS OF #TBLOCK AFTER MOVE BY NAME:

 #FIELD1:
 #FIELDA: AAAAAAAAAA
 #FIELD2:
 #FIELDB: BBBBBBBBBB
 #FIELD3:
 #FIELDC: CCCCCCCCCC

9Copyright Software AG 2003

Example 2MOVE

	MOVE
	Function
	ROUNDED
	parameter
	PM=I
	DF
	SUBSTRING
	MOVE BY NAME
	MOVE BY NAME with Arrays

	MOVE BY POSITION
	MOVE EDITED
	MOVE LEFT/RIGHT JUSTIFIED
	MOVE LEFT/RIGHT JUSTIFIED with PM=I

	Other Considerations
	Example 1
	Example 2

